News Release

Monday, November 18, 2024

NIH-developed AI algorithm matches potential volunteers to clinical trials

Such an algorithm may save clinicians time and accelerate clinical enrollment and research.

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials listed on . A study published in found that the AI algorithm, called TrialGPT, could successfully identify relevant clinical trials for which a person is eligible and provide a summary that clearly explains how that person meets the criteria for study enrollment. The researchers concluded that this tool could help clinicians navigate the vast and ever-changing range of clinical trials available to their patients, which may lead to improved clinical trial enrollment and faster progress in medical research.

A team of researchers from NIH鈥檚 National Library of Medicine (NLM) and National Cancer Institute harnessed the power of large language models (LLMs) to develop an innovative framework for TrialGPT to streamline the clinical trial matching process. TrialGPT first processes a patient summary, which contains relevant medical and demographic information. The algorithm then identifies relevant clinical trials from ClinicalTrials.gov for which a patient is eligible and excludes trials for which they are ineligible. TrialGPT then explains how the person meets the study enrollment criteria. The final output is an annotated list of clinical trials鈥攔anked by relevance and eligibility鈥攖hat clinicians can use to discuss clinical trial opportunities with their patient.

鈥淢achine learning and AI technology have held promise in matching patients with clinical trials, but their practical application across diverse populations still needed exploration,鈥 said NLM Acting Director, Stephen Sherry, PhD. 鈥淭his study shows we can responsibly leverage AI technology so physicians can connect their patients to a relevant clinical trial that may be of interest to them with even more speed and efficiency.鈥

To assess how well TrialGPT predicted if a patient met a specific requirement for a clinical trial, the researchers compared TrialGPT鈥檚 results to those of three human clinicians who assessed over 1,000 patient-criterion pairs. They found that TrialGPT achieved nearly the same level of accuracy as the clinicians.

Additionally, the researchers conducted a pilot user study, where they asked two human clinicians to review six anonymous patient summaries and match them to six clinical trials. For each patient and trial pair, one clinician was asked to manually review the patient summaries, check if the person was eligible, and decide if the patient might qualify for the trial. For the same patient-trial pair, another clinician used TrialGPT to assess the patient鈥檚 eligibility. The researchers found that when clinicians use TrialGPT, they spent 40% less time screening patients but maintained the same level of accuracy.

Clinical trials uncover important medical discoveries that improve health, and potential participants often learn about these opportunities through their clinicians. However, finding the right clinical trial for interested participants is a time-consuming and resource-intensive process, which can slow down important medical research.

鈥淥ur study shows that TrialGPT could help clinicians connect their patients to clinical trial opportunities more efficiently and save precious time that can be better spent on harder tasks that require human expertise,鈥 said NLM Senior Investigator and corresponding author of the study, Zhiyong Lu, PhD.

Given the promising benchmarking results, the research team was recently selected for The to further assess the model鈥檚 performance and fairness in real-world clinical settings. The researchers anticipate that this work could make clinical trial recruitment more effective and help reduce barriers to participation for populations underrepresented in clinical research.

The study was co-authored by collaborators from Albert Einstein College of Medicine, New York City; University of Pittsburgh; University of Illinois Urbana-Champaign; and University of Maryland, College Park.

NLM is a leader in research in biomedical informatics and data science and the world鈥檚 largest biomedical library. NLM conducts and supports research in methods for recording, storing, retrieving, preserving, and communicating health information. NLM creates resources and tools that are used billions of times each year by millions of people to access and analyze molecular biology, biotechnology, toxicology, environmental health, and health services information. Additional information is available at鈥.听

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. 麻豆传媒 is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information abour 麻豆传媒 and its programs, visit www.nih.gov.

NIH…Turning Discovery Into Health

Reference

Qiao Jin, et al.听Matching Patients to ClinicalTrials withLarge Language Models.听Nature Communications. DOI: 10.1038/s41467-024-53081-z. (2024).听

###